NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: EJ1136102
Record Type: Journal
Publication Date: 2017-Feb
Pages: 19
Abstractor: As Provided
ISSN: EISSN-1492-3831
Instance-Based Ontology Matching for Open and Distance Learning Materials
Cerón-Figueroa, Sergio; López-Yáñez, Itzamá; Villuendas-Rey, Yenny; Camacho-Nieto, Oscar; Aldape-Pérez, Mario; Yáñez-Márquez, Cornelio
International Review of Research in Open and Distributed Learning, v18 n1 p177-195 Feb 2017
The present work describes an original associative model of pattern classification and its application to align different ontologies containing Learning Objects (LOs), which are in turn related to Open and Distance Learning (ODL) educative content. The problem of aligning ontologies is known as Ontology Matching Problem (OMP), whose solution is modeled in this paper as a binary pattern classification problem. The latter problem is then solved through the application of our new proposed associative model. The solution proposed here allows the alignment of two different ontologies--both in the Learning Objects Metadata (LOM) format--into a single ontology of LOs for ODL in LOM format, without redundant objects and with all inherent advantages for handling ODL LOs. The proposed model of pattern classification was validated through experiments, which were done on data taken from the Ontology Alignment Evaluation Initiative (OAEI) 2014 campaign, as well as on data taken from two known educative content repositories: ADRIADNE and MERLOT. The obtained results show a high performance when compared against some of the classifier algorithms present in the state of the art.
Athabasca University. 1200, 10011 - 109 Street, Edmonton, AB T5J 3S8, Canada. Tel: 780-421-2536; Fax: 780-497-3416; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A