NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1131876
Record Type: Journal
Publication Date: 2017-Feb
Pages: 6
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1092-4388
EISSN: N/A
A Near-Infrared Spectroscopy Study on Cortical Hemodynamic Responses to Normal and Whispered Speech in 3- to 7-Year-Old Children
Remijn, Gerard B.; Kikuchi, Mitsuru; Yoshimura, Yuko; Shitamichi, Kiyomi; Ueno, Sanae; Tsubokawa, Tsunehisa; Kojima, Haruyuki; Higashida, Haruhiro; Minabe, Yoshio
Journal of Speech, Language, and Hearing Research, v60 n2 p465-470 Feb 2017
Purpose: The purpose of this study was to assess cortical hemodynamic response patterns in 3- to 7-year-old children listening to two speech modes: normally vocalized and whispered speech. Understanding whispered speech requires processing of the relatively weak, noisy signal, as well as the cognitive ability to understand the speaker's reason for whispering. Method: Near-infrared spectroscopy (NIRS) was used to assess changes in cortical oxygenated hemoglobin from 16 typically developing children. Results: A profound difference in oxygenated hemoglobin levels between the speech modes was found over left ventral sensorimotor cortex. In particular, over areas that represent speech articulatory body parts and motion, such as the larynx, lips, and jaw, oxygenated hemoglobin was higher for whisper than for normal speech. The weaker stimulus, in terms of sound energy, thus induced the more profound hemodynamic response. This, moreover, occurred over areas involved in speech articulation, even though the children did not overtly articulate speech during measurements. Conclusion: Because whisper is a special form of communication not often used in daily life, we suggest that the hemodynamic response difference over left ventral sensorimotor cortex resulted from inner (covert) practice or imagination of the different articulatory actions necessary to produce whisper as opposed to normal speech.
American Speech-Language-Hearing Association. 2200 Research Blvd #250, Rockville, MD 20850. Tel: 301-296-5700; Fax: 301-296-8580; e-mail: slhr@asha.org; Web site: http://jslhr.pubs.asha.org
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A