NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: EJ1127034
Record Type: Journal
Publication Date: 2014
Pages: 22
Abstractor: As Provided
Reference Count: 28
ISBN: N/A
ISSN: EISSN-1929-7750
Affective States and State Tests: Investigating How Affect and Engagement during the School Year Predict End-of-Year Learning Outcomes
Pardos, Zachary A.; Baker, Ryan S. J. D.; San Pedro, Maria O. C. Z.; Gowda, Sujith M.; Gowda, Supreeth M.
Journal of Learning Analytics, v1 n1 p107-128 2014
In this paper, we investigate the correspondence between student affect and behavioural engagement in a web-based tutoring platform throughout the school year and learning outcomes at the end of the year on a high-stakes mathematics exam in a manner that is both longitudinal and fine-grained. Affect and behaviour detectors are used to estimate student affective states and behaviour based on post-hoc analysis of tutor log-data. For every student action in the tutor, the detectors give us an estimated probability that the student is in a state of boredom, engaged concentration, confusion, or frustration, and estimates of the probability that the student is exhibiting off-task or gaming behaviours. We used data from the ASSISTments math tutoring system and found that boredom during problem solving is negatively correlated with performance, as expected; however, boredom is positively correlated with performance when exhibited during scaffolded tutoring. A similar pattern is unexpectedly seen for confusion. Engaged concentration and, surprisingly, frustration are both associated with positive learning outcomes. In a second analysis, we build a unified model that predicts student standardized examination scores from a combination of student affect, disengaged behaviour, and performance within the learning system. This model achieves high overall correlation to standardized exam score, showing that these types of features can effectively infer longer-term learning outcomes.
Society for Learning Analytics Research. 121 Pointe Marsan, Beaumont, AB T4X 0A2, Canada. Tel: +61-429-920-838; e-mail: info@solaresearch.org; Web site: http://learning-analytics.info/journals/index.php/JLA/
Publication Type: Journal Articles; Reports - Research
Education Level: Secondary Education; Middle Schools; Junior High Schools
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF)
Authoring Institution: N/A
Identifiers - Location: Massachusetts
Identifiers - Assessments and Surveys: Massachusetts Comprehensive Assessment System
Grant or Contract Numbers: DRL1031398