NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: EJ1125986
Record Type: Journal
Publication Date: 2017
Pages: 36
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0211-2159
EISSN: N/A
Multilevel Modeling in the Presence of Outliers: A Comparison of Robust Estimation Methods
Finch, Holmes
Psicologica: International Journal of Methodology and Experimental Psychology, v38 n1 p57-92 2017
Multilevel models (MLMs) have proven themselves to be very useful in social science research, as data from a variety of sources is sampled such that individuals at level-1 are nested within clusters such as schools, hospitals, counseling centers, and business entities at level-2. MLMs using restricted maximum likelihood estimation (REML) provide researchers with accurate estimates of parameters and standard errors at all levels of the data when the assumption of normality is met, and outliers are not present in the sample. However, if outliers at either levels 1 or 2 occur, the parameter estimates and standard errors produced by REML can both be compromised. Two estimation approaches for use when outliers are present have been proposed recently in the literature. Although the two methods, one based on ranks and the other on heavy tailed distributions of model errors, show promise, neither has heretofore been studied comprehensively across a wide variety of data conditions, nor have they been compared with one another. Thus, the purpose of the current study was to compare the rank and heavy tailed based estimation techniques with one another, and with REML, in terms of their ability to estimate level-1 fixed effects, under a variety of data conditions. Results of the study revealed that the rank based and heavy tailed method provide less biased estimates than REML when outliers are present, and that the rank approaches yield smaller standard errors than the heavy tailed approach in the presence of outliers. Implications of these results are discussed.
University of Valencia. Dept. Metodologia, Facultad de Psicologia, Avda. Blasco Ibanez 21, 46010 Valencia, Spain. Tel: +34-96-386-4100; Web site: http://www.uv.es/revispsi/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A