NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1113842
Record Type: Journal
Publication Date: 2016-Oct
Pages: 25
Abstractor: As Provided
ISSN: ISSN-0013-1644
Different Approaches to Covariate Inclusion in the Mixture Rasch Model
Li, Tongyun; Jiao, Hong; Macready, George B.
Educational and Psychological Measurement, v76 n5 p848-872 Oct 2016
The present study investigates different approaches to adding covariates and the impact in fitting mixture item response theory models. Mixture item response theory models serve as an important methodology for tackling several psychometric issues in test development, including the detection of latent differential item functioning. A Monte Carlo simulation study is conducted in which data generated according to a two-class mixture Rasch model with both dichotomous and continuous covariates are fitted to several mixture Rasch models with misspecified covariates to examine the effects of covariate inclusion on model parameter estimation. In addition, both complete response data and incomplete response data with different types of missingness are considered in the present study in order to simulate practical assessment settings. Parameter estimation is carried out within a Bayesian framework vis-à-vis Markov chain Monte Carlo algorithms.
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A