NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: EJ1111597
Record Type: Journal
Publication Date: 2007-Nov
Pages: 68
Abstractor: As Provided
Reference Count: 31
ISBN: N/A
ISSN: EISSN-2330-8516
An Illustration of the Use of Markov Decision Processes to Represent Student Growth (Learning). Research Report. ETS RR-07-40
Almond, Russell G.
ETS Research Report Series, Nov 2007
Over the course of instruction, instructors generally collect a great deal of information about each student. Integrating that information intelligently requires models for how a student's proficiency changes over time. Armed with such models, instructors can "filter" the data--more accurately estimate the student's current proficiency levels--and "forecast" the student's future proficiency levels. The process of instructional planning can be described as a "partially observed Markov decision process" (POMDP). Recently developed computer algorithms can be used to help instructors create strategies for student achievement and identify at-risk students. Implementing this vision requires models for how instructional actions change student proficiencies. The "general action model" (also called the "bowtie model") separately models the factors contributing to the success or effectiveness of an action, proficiency growth when the action is successful, and proficiency growth when the action is unsuccessful. This class of models requires parameterization, and this paper presents two: a simple linear process model (suitable for continuous proficiencies) and a birth-and-death process model (for proficiency scales expressed as ordered categorical variables). Both models show how to take prerequisites and zones of proximal development into account. The filtering process is illustrated using a simple artificial example.
Educational Testing Service. Rosedale Road, MS19-R Princeton, NJ 08541. Tel: 609-921-9000; Fax: 609-734-5410; e-mail: RDweb@ets.org; Web site: https://www.ets.org/research/policy_research_reports/ets
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A