NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1100279
Record Type: Journal
Publication Date: 2016-Apr
Pages: 6
Abstractor: As Provided
ISSN: ISSN-0021-9584
A Biphasic Ligand Exchange Reaction on Cdse Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells
Zemke, Jennifer M.; Franz, Justin
Journal of Chemical Education, v93 n4 p747-752 Apr 2016
Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP surface. In the interest of exploiting these particles for solar applications, the surface can be tuned to facilitate charge transfer out of the nanoparticles to maximize photocurrent for high-efficiency, low-cost solar cells. This multiweek undergraduate laboratory experiment introduces students to semiconducting nanomaterials and to taking steps to ensure functionality of these materials for solar applications. The experiment includes the synthesis of oleic acid-capped (OLA) CdSe particles and a biphasic ligand exchange reaction to afford ionically functionalized CdSe nanoparticles capped with sodium 3-mercaptopropane-1-sulfonate (MPS). Both the CdSe-OLA and CdSe-MPS materials in this experiment are characterized for ligand binding and relative particle size distribution by FTIR, 1H NMR, and UV-visible spectroscopies.
Division of Chemical Education, Inc and ACS Publications Division of the American Chemical Society. 1155 Sixteenth Street NW, Washington, DC 20036. Tel: 800-227-5558; Tel: 202-872-4600; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Descriptive
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A