NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1085112
Record Type: Journal
Publication Date: 2016-Jan
Pages: 12
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1072-0502
EISSN: N/A
Synapsin Is Required to "Boost" Memory Strength for Highly Salient Events
Kleber, Jörg; Chen, Yi-Chun; Michels, Birgit; Saumweber, Timo; Schleyer, Michael; Kähne, Thilo; Buchner, Erich; Gerber, Bertram
Learning & Memory, v23 n1 p9-20 Jan 2016
Synapsin is an evolutionarily conserved presynaptic phosphoprotein. It is encoded by only one gene in the "Drosophila" genome and is expressed throughout the nervous system. It regulates the balance between reserve and releasable vesicles, is required to maintain transmission upon heavy demand, and is essential for proper memory function at the behavioral level. Task-relevant sensorimotor functions, however, remain intact in the absence of Synapsin. Using an odor-sugar reward associative learning paradigm in larval "Drosophila", we show that memory scores in mutants lacking Synapsin ("syn"[superscript 97]) are lower than in wild-type animals only when more salient, higher concentrations of odor or of the sugar reward are used. Furthermore, we show that Synapsin is selectively required for larval short-term memory. Thus, without Synapsin "Drosophila" larvae can learn and remember, but Synapsin is required to form memories that match in strength to event salience--in particular to a high saliency of odors, of rewards, or the salient recency of an event. We further show that the residual memory scores upon a lack of Synapsin are not further decreased by an additional lack of the Sap47 protein. In combination with mass spectrometry data showing an up-regulated phosphorylation of Synapsin in the larval nervous system upon a lack of Sap47, this is suggestive of a functional interdependence of Synapsin and Sap47.
Cold Spring Harbor Laboratory Press. 500 Sunnyside Boulevard, Woodbury, NY 11797-2924. Tel: 800-843-4388; Tel: 516-367-8800; Fax: 516-422-4097; e-mail: cshpres@cshl.edu; Web site: http://www.learnmem.org/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A