NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1084714
Record Type: Journal
Publication Date: 2015
Pages: 25
Abstractor: As Provided
Reference Count: 31
ISBN: N/A
ISSN: ISSN-0816-9020
Design and Implementation of an Intelligent System to Predict the Student Graduation AGPA
Ismail, Sameh; Abdulla, Shubair
Australian Educational Computing, v30 n2 2015
Since Accumulated Grad-Point Average (AGPA) is crucial in the professional life of students, it is an interesting and challenging problem to create profiles for those students who are likely to graduate with low AGPA. Identifying this kind of students accurately will enable the university staff to help them improve their ability by providing them with special academic guidance and tutoring. In this paper, using a large and feature rich dataset of marks of high secondary school subjects, we developed a data-mining model to classify the newly-enrolled students into two groups; "weak students" (i.e. students who are likely to graduate with low AGPA) and "normal students" (i.e. students who are likely to graduate with high AGPA). We investigated the suitability of evolving fuzzy clustering methods to predict the ability of students graduating in five disciplines at Sultan Qaboos University in the Sultanate of Oman. A solid test has been conducted to determine the model quality and validity. The experimental results showed a high level of accuracy, ranging from 71%-84%. This accuracy revealed the suitability of evolving fuzzy clustering methods for predicting the students' AGPA.
Australian Council for Computers in Education. P.O. Box 1255, Belconnen, ACT 2616, Australia. Tel: +61-3-9349-3733; Fax: +61-3-9349-5356; Web site: http://www.acce.edu.au
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: Oman