NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1082413
Record Type: Journal
Publication Date: 2015-Nov
Pages: 5
Abstractor: As Provided
ISSN: ISSN-0021-9584
3D Printed Block Copolymer Nanostructures
Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.
Journal of Chemical Education, v92 n11 p1866-1870 Nov 2015
The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this work, we have filled part of this gap by designing and 3D printing several block copolymer (BCP) nanostructure morphologies. We used a variety of methods including manually drawing the files within 3D computer design software, using equations with mathematical graphing software, and developing a programming script to convert self-consistent field theory (SCFT) structure data into a 3D printable file. Conversion of SCF data into 3D printable structures may find broader applicability beyond creating BCP nanostructures as SCF calculations are used in a variety of geometric computations. All methods reported herein produced tangible 3D prints of approximately equal quality. These tangible models will be useful for educators, students, and researchers in polymer science and nanotechnology.
Division of Chemical Education, Inc and ACS Publications Division of the American Chemical Society. 1155 Sixteenth Street NW, Washington, DC 20036. Tel: 800-227-5558; Tel: 202-872-4600; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF)
Authoring Institution: N/A
Grant or Contract Numbers: NSFCBET1159397