NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1082296
Record Type: Journal
Publication Date: 2015-Nov
Pages: 5
Abstractor: ERIC
ISSN: ISSN-0025-5769
The Inequality of Arithmetic and Geometric Means from Multiple Perspectives
Askey, Richard; Matsuura, Ryota; Sword, Sarah
Mathematics Teacher, v109 n4 p314-318 Nov 2015
NCTM's Connections Standard recommends that students in grades 9-12 "develop an increased capacity to link mathematical ideas and a deeper understanding of how more than one approach to the same problem can lead to equivalent results, even though the approaches might look quite different" (NCTM 2000, p. 354). In this article, the authors embody these recommendations by exploring the AGM inequality in three variables. First, they give an algebraic proof of the AGM inequality using the factorization of a certain symmetric polynomial. Next, they describe geometric inequalities called isoperimetric inequalities and explain how they are related to the AGM inequality. Along the way, they give an elegant proof of the AGM inequality by Cauchy and introduce a beautiful extension called Maclaurin's inequalities. Finally, the authors give yet another proof of the AGM inequality using Rolle's theorem and calculus. By studying the AGM inequality in three variables and from these different perspectives, both teachers and students can experience and gain appreciation for the interconnected nature of mathematics.
National Council of Teachers of Mathematics. 1906 Association Drive, Reston, VA 20191-1502. Tel: 800-235-7566; Tel: 703-620-3702; Fax: 703-476-2970; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Descriptive
Education Level: Secondary Education
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF)
Authoring Institution: N/A
Grant or Contract Numbers: DRL1222340; DRL1222426