NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1074773
Record Type: Journal
Publication Date: 2015-Oct
Pages: 21
Abstractor: As Provided
ISSN: ISSN-2211-1662
Cognitive Demand of Model Tracing Tutor Tasks: Conceptualizing and Predicting How Deeply Students Engage
Kessler, Aaron M.; Stein, Mary Kay; Schunn, Christian D.
Technology, Knowledge and Learning, v20 n3 p317-337 Oct 2015
Model tracing tutors represent a technology designed to mimic key elements of one-on-one human tutoring. We examine the situations in which such supportive computer technologies may devolve into mindless student work with little conceptual understanding or student development. To analyze the support of student intellectual work in the model tracing tutor case, we adapt a cognitive demand framework that has been previously applied with success to teacher-guided mathematics classrooms. This framework is then tested against think-aloud data from students using a model tracing tutor designed to teach proportional reasoning skills in the context of robotics movement planning problems. Individual tutor tasks are coded for designed level of cognitive demand and compared to students' enacted level of cognitive demand. In general, designed levels predicted how students enacted the tasks. However, just as in classrooms, student enactment was often at lower levels of demand than designed. Several contextual design features were associated with this decline. Implications for intelligent tutoring system design and research are discussed.
Springer. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF)
Authoring Institution: N/A
Grant or Contract Numbers: DRL-1029404