NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1022846
Record Type: Journal
Publication Date: 2014-May
Pages: 13
Abstractor: As Provided
Reference Count: N/A
ISSN: ISSN-0007-1013
e-Research and Learning Theory: What Do Sequence and Process Mining Methods Contribute?
Reimann, Peter; Markauskaite, Lina; Bannert, Maria
British Journal of Educational Technology, v45 n3 p528-540 May 2014
This paper discusses the fundamental question of how data-intensive e-research methods could contribute to the development of learning theories. Using methodological developments in research on self-regulated learning as an example, it argues that current applications of data-driven analytical techniques, such as educational data mining and its branch process mining, are deeply grounded in an event-focused, ontologically flat view of learning phenomena. These techniques provide descriptive accounts of the regularities of events, but have limited power to generate theoretical explanations. Building on the philosophical views of critical realism, the paper argues that educational e-research needs to adopt more nuanced ways for investigating and theorising learning phenomena that could provide an account of the mechanisms and contexts in which those mechanisms are realised. It proposes that future methodological extensions should include three main aspects: (1) stratified ontological frameworks, (2) multimodal data collection and (3) dynamic analytical methods.
Wiley-Blackwell. 350 Main Street, Malden, MA 02148. Tel: 800-835-6770; Tel: 781-388-8598; Fax: 781-388-8232; e-mail:; Web site:
Publication Type: Reports - Evaluative; Journal Articles
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A