NotesFAQContact Us
Collection
Advanced
Search Tips
ERIC Number: ED566452
Record Type: Non-Journal
Publication Date: 2016
Pages: 181
Abstractor: As Provided
Reference Count: N/A
ISBN: 978-1-3394-3258-8
ISSN: N/A
Data Science for Imbalanced Data: Methods and Applications
Johnson, Reid A.
ProQuest LLC, Ph.D. Dissertation, University of Notre Dame
Data science is a broad, interdisciplinary field concerned with the extraction of knowledge or insights from data, with the classification of data as a core, fundamental task. One of the most persistent challenges faced when performing classification is the class imbalance problem. Class imbalance refers to when the frequency with which each class appears in data is not roughly equivalent, and the problem is that introduction of class imbalance into the task of classification poses serious challenges that must be addressed in order to provide knowledge and insight. Yet, the challenges that class imbalance gives rise to are in part due to its ubiquitous prevalence, and it stands as a problem that pervades almost every area of investigation under which data science has provenance. In this dissertation, we investigate and counter class imbalance in several domains, touching upon areas as diverse as ecological informatics, scientific impact prediction, healthcare analytics, and education. By the end of this dissertation, we will develop and apply a variety of methods and techniques used to combat the class imbalance that is endemic to these and other domains. We will also compare and contrast the approaches we use to combat class imbalance with more traditional approaches typically employed within each domain. Before beginning, however, we present a preliminary overview of the class imbalance problem and the algorithms, methods, and evaluation metrics generally employed to address it. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page: http://www.proquest.com/en-US/products/dissertations/individuals.shtml.]
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site: http://www.proquest.com/en-US/products/dissertations/individuals.shtml
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A