NotesFAQContact Us
Search Tips
ERIC Number: ED556666
Record Type: Non-Journal
Publication Date: 2012
Pages: 145
Abstractor: As Provided
Reference Count: N/A
ISBN: 978-1-3037-4179-1
Network-Centric Data Mining for Medical Applications
Davis, Darcy A.
ProQuest LLC, Ph.D. Dissertation, University of Notre Dame
Faced with unsustainable costs and enormous amounts of under-utilized data, health care needs more efficient practices, research, and tools to harness the benefits of data. These methods create a feedback loop where computational tools guide and facilitate research, leading to improved biological knowledge and clinical standards, which will in turn generate better data. In order to facilitate the necessary changes, better tools are needed for assessing risk and optimizing treatments, which further require better understanding of disease interdependencies, genetic influence, and translation into a patient's future. This dissertation explores network-centric data mining approaches for benefit in multiple stages of this feedback loop: from better understanding of disease mechanisms to development of novel clinical tools for personalized and prospective medicine. Applications include predicting personalized patient disease risk based on medical history, optimizing NICU nursing schedules to reduce negative effects, and predicting novel disease-gene interactions. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page:]
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site:
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A