NotesFAQContact Us
Search Tips
ERIC Number: ED551708
Record Type: Non-Journal
Publication Date: 2012
Pages: 193
Abstractor: As Provided
Reference Count: N/A
ISBN: 978-1-2678-2113-3
Spatiotemporal Data Mining, Analysis, and Visualization of Human Activity Data
Li, Xun
ProQuest LLC, Ph.D. Dissertation, Arizona State University
This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and geovisualization techniques. Three different types of spatiotemporal activity data were collected through different data collection approaches: (1) crowd sourced geo-tagged digital photos, representing people's travel activity, were retrieved from the website through information retrieval techniques; (2) the same techniques were used to crawl crowd sourced GPS trajectory data and related metadata of their daily activities from the website; and finally (3) preschool children's daily activities and interactions tagged with time and geographical location were collected with a novel TabletPC-based behavioral coding system. The proposed methodology is applied to these data to (1) automatically recommend optimal multi-day and multi-stay travel itineraries for travelers based on discovered attractions from geo-tagged photos, (2) automatically detect movement types of unknown moving objects from GPS trajectories, and (3) explore dynamic social and socio-spatial patterns of preschool children's behavior from both geographic and social perspectives. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page:]
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site:
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A