NotesFAQContact Us
Collection
Advanced
Search Tips
ERIC Number: ED551059
Record Type: Non-Journal
Publication Date: 2012
Pages: 158
Abstractor: As Provided
Reference Count: N/A
ISBN: 978-1-2677-1442-8
ISSN: N/A
Topics in Nanophotonic Devices for Nitrogen-Vacancy Color Centers in Diamond
Babinec, Thomas Michael
ProQuest LLC, Ph.D. Dissertation, Harvard University
Recently, developments in novel and high-purity materials allow for the presence of a single, solitary crystalline defect to define the electronic, magnetic, and optical functionality of a device. The discrete nature of the active dopant, whose properties are defined by a quantum mechanical description of its structure, enables radically new quantum investigations and applications in these arenas. Finally, there has been significant development in large-scale device engineering due to mature semiconductor manufacturing techniques. The diverse set of photonic device architectures offering light confinement, guiding, and extraction is a prime example. These three paradigms--solitary dopant photonics and optoelectronics (solotronics), quantum science and technology, and device engineering--merge in the development of novel quantum photonic devices for the next generation of information processing systems. We present in this thesis a series of investigations of optical nanostructures for single optically active spins in single crystal diamond. Chapter 1 introduces the Nitrogen-Vacancy (NV) color center, summarizes its applications, and motivates the need for their integration into photonic structures. Chapter 2 describes two prototype nanobeam photonic crystal cavities for generating strong light-matter interactions with NV centers. The first device consists of a silicon nitride photonic crystal nanobeam cavity with high quality factor Q ~ 10[superscript 5] and small mode volume V ~ 0.5*(?/n)[superscript 3]. The second device consists of a monolithic diamond nanobeam cavity fabricated with the focused ion beam (FIB) directly in a single crystal diamond sample. Chapter 3 presents a high-efficiency source of single photons consisting of a single NV center in a photonic diamond nanowire. Early FIB prototypes are described, as is the first successful realization of the device achieved via reactive ion etching nanowires in a single crystal diamond containing NV centers, and finally a variation of this approach based on incorporation of NV centers in pure diamond via ion implantation. In chapter 4 we consider the optimal design of photonic devices offering both collection efficiency and cavity-enhancements and extend the model of the NV center to include photonic effects. In chapter 5 we briefly introduce a novel optically active spin discovered in a diamond nanowire. Finally, in chapter 6 we conclude with several proposals to extend this research program. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page: http://www.proquest.com/en-US/products/dissertations/individuals.shtml.]
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site: http://www.proquest.com/en-US/products/dissertations/individuals.shtml
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A