NotesFAQContact Us
Search Tips
ERIC Number: ED550829
Record Type: Non-Journal
Publication Date: 2012
Pages: 415
Abstractor: As Provided
Reference Count: N/A
ISBN: 978-1-3030-1258-7
A Framework for Understanding Physics Students' Computational Modeling Practices
Lunk, Brandon Robert
ProQuest LLC, Ph.D. Dissertation, North Carolina State University
With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a "Matter & Interactions": Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by their existing physics content knowledge, particularly their knowledge of analytic procedures. While this existing knowledge was often applied in inappropriate circumstances, the students were still able to display a considerable amount of understanding of the physics content and of analytic solution procedures. These observations could not be adequately accommodated by the existing literature of programming comprehension. In extending the resource framework to the task of computational modeling, I model students' practices in terms of three important elements. First, a knowledge base includes resources for understanding physics, math, and programming structures. Second, a mechanism for monitoring and control describes students' expectations as being directed towards numerical, analytic, qualitative or rote solution approaches and which can be influenced by the problem representation. Third, a set of solution approaches--many of which were identified in this study--describe what aspects of the knowledge base students use and how they use that knowledge to enact their expectations. This framework allows us as researchers to track student discussions and pinpoint the source of difficulties. This work opens up many avenues of potential research. First, this framework gives researchers a vocabulary for extending Resource Theory to other domains of instruction, such as modeling how physics students use graphs. Second, this framework can be used as the basis for modeling expert physicists' programming practices. Important instructional implications also follow from this research. Namely, as we broaden the use of computational modeling in the physics classroom, our instructional practices should focus on helping students understand the step-by-step nature of programming in contrast to the already salient analytic procedures. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page:]
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site:
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A