NotesFAQContact Us
Collection
Advanced
Search Tips
ERIC Number: ED524536
Record Type: Non-Journal
Publication Date: 2010
Pages: 295
Abstractor: As Provided
Reference Count: 0
ISBN: ISBN-978-1-1244-3112-3
ISSN: N/A
Utilizing Social Bookmarking Tag Space for Web Content Discovery: A Social Network Analysis Approach
Wei, Wei
ProQuest LLC, Ph.D. Dissertation, The University of Arizona
Social bookmarking has gained popularity since the advent of Web 2.0. Keywords known as tags are created to annotate web content, and the resulting tag space composed of the tags, the resources, and the users arises as a new platform for web content discovery. Useful and interesting web resources can be located through searching and browsing based on tags, as well as following the user-user connections formed in the social bookmarking community. However, the effectiveness of tag-based search is limited due to the lack of explicitly represented semantics in the tag space. In addition, social connections between users are underused for web content discovery because of the inadequate social functions. In this research, we propose a comprehensive framework to reorganize the flat tag space into a hierarchical faceted model. We also studied the structure and properties of various networks emerging from the tag space for the purpose of more efficient web content discovery. The major research approach used in this research is social network analysis (SNA), together with methodologies employed in design science research. The contribution of our research includes: (i) a faceted model to categorize social bookmarking tags; (ii) a relationship ontology to represent the semantics of relationships between tags; (iii) heuristics to reorganize the flat tag space into a hierarchical faceted model using analysis of tag-tag co-occurrence networks; (iv) an implemented prototype system as proof-of-concept to validate the feasibility of the reorganization approach; (v) a set of evaluations of the social functions of the current networking features of social bookmarking and a series of recommendations as to how to improve the social functions to facilitate web content discovery. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page: http://www.proquest.com/en-US/products/dissertations/individuals.shtml.]
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site: http://www.proquest.com/en-US/products/dissertations/individuals.shtml
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A