NotesFAQContact Us
Search Tips
ERIC Number: ED421548
Record Type: Non-Journal
Publication Date: 1998
Pages: 40
Abstractor: N/A
Reference Count: N/A
Simulating the Null Distribution of Person-Fit Statistics for Conventional and Adaptive Tests. Research Report 98-02.
Meijer, Rob R.; van Krimpen-Stoop, Edith M. L. A.
Several person-fit statistics have been proposed to detect item score patterns that do not fit an item response theory model. To classify response patterns as not fitting a model, a distribution of a person-fit statistic is needed. The null distributions of several fit statistics have been investigated using conventionally administered tests, but less is known about the distribution of fit statistics for computerized adaptive testing (CAT). A three-part simulation to study this distribution is described. First the theoretical distribution of the often used l(z) statistic across theta levels in a conventional testing and in CAT testing was studied, where theta and estimated theta were used to calculate l(z). Also, the distribution of a statistic l*(z), that is corrected for the error in theta, proposed by T. Snijders (1998) was studied in both testing environments. Simulating the distribution of l(z) for the two-parameter logistic model for conventional tests was studied. Two procedures for simulating the distribution of l(z) and l*(z) in a CAT were examined: (1) item scores were simulated with a fixed set of administered items; and (2) item scores were generated according to a stochastic design, where the choice of the administered item i + 1 depended on responses to previously administered items. The third study was a power study conducted to compare detection rates of l*(z) with l(z) for conventional tests. Results indicate that the distribution of l(z) differed from the theoretical distribution in conventional and CAT environments. In a conventional testing situation, the distribution of l(z) was in accord with the theoretical distribution, but for the CAT the distribution differed from the theoretical distribution. In the context of conventional testing, simulating the sampling distribution of l(z) for every examinee, based on theta, resulted in an appropriate approximation of the distribution. However, for the CAT environment, simulating the sampling distributions of both l(z) and l*(z) was problematic. Two appendixes show the derivation of the l*(z) statistic and discuss modeling local dependence. (Contains 6 tables, 3 figures, and 24 references.) (Author/SLD)
Faculty of Educational Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Publication Type: Reports - Evaluative
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: Twente Univ., Enschede (Netherlands). Faculty of Educational Science and Technology.