NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ767888
Record Type: Journal
Publication Date: 2006
Pages: 8
Abstractor: Author
ISBN: N/A
ISSN: ISSN-1072-0502
EISSN: N/A
The Cerebellum in Maintenance of a Motor Skill: A Hierarchy of Brain and Spinal Cord Plasticity Underlies H-Reflex Conditioning
Wolpaw, Jonathan R.; Chen, Xiang Yang
Learning & Memory, v13 n2 p208-215 Mar-Apr 2006
Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex, is a simple model of skill acquisition and involves plasticity in the spinal cord. Previous work showed that the cerebellum is essential for down-conditioning the H-reflex. This study asks whether the cerebellum is also essential for maintaining down-conditioning. After rats decreased the soleus H-reflex over 50 d in response to the down-conditioning protocol, the cerebellar output nuclei dentate and interpositus (DIN) were ablated, and down-conditioning continued for 50-100 more days. In naive (i.e., unconditioned) rats, DIN ablation itself has no significant long-term effect on H-reflex size. During down-conditioning prior to DIN ablation, eight Sprague-Dawley rats decreased the H-reflex to 57% (plus or minus 4 SEM) of control. It rose after ablation, stabilizing within 2 d at about 75% and remaining there until approximately 40 d after ablation. It then rose to approximately 130%, where it remained through the end of study 100 d after ablation. Thus, DIN ablation in down-conditioned rats caused an immediate increase and a delayed increase in the H-reflex. The final result was an H-reflex significantly larger than that prior to down-conditioning. Combined with previous work, these remarkable results suggest that the spinal cord plasticity directly responsible for down-conditioning, which survives only 5-10 d on its own, is maintained by supraspinal plasticity that survives approximately 40 d after loss of cerebellar output. Thus, H-reflex conditioning seems to depend on a hierarchy of brain and spinal cord plasticity to which the cerebellum makes an essential contribution. (Contains 3 figures.)
Cold Spring Harbor Laboratory Press. 500 Sunnyside Boulevard, Woodbury, NY 11797-2924. Tel: 800-843-4388; 516-367-8800; Fax: 516-422-4097; e-mail: cshpres@cshl.edu; Web site: http://www.learnmem.org/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A