NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ922316
Record Type: Journal
Publication Date: 2011-Apr
Pages: 17
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0898-929X
EISSN: N/A
Neural Correlates of Sublexical Processing in Phonological Working Memory
McGettigan, Carolyn; Warren, Jane E.; Eisner, Frank; Marshall, Chloe R.; Shanmugalingam, Pradheep; Scott, Sophie K.
Journal of Cognitive Neuroscience, v23 n4 p961-977 Apr 2011
This study investigated links between working memory and speech processing systems. We used delayed pseudoword repetition in fMRI to investigate the neural correlates of sublexical structure in phonological working memory (pWM). We orthogonally varied the number of syllables and consonant clusters in auditory pseudowords and measured the neural responses to these manipulations under conditions of covert rehearsal (Experiment 1). A left-dominant network of temporal and motor cortex showed increased activity for longer items, with motor cortex only showing greater activity concomitant with adding consonant clusters. An individual-differences analysis revealed a significant positive relationship between activity in the angular gyrus and the hippocampus, and accuracy on pseudoword repetition. As models of pWM stipulate that its neural correlates should be activated during both perception and production/rehearsal [Buchsbaum, B. R., & D'Esposito, M. The search for the phonological store: From loop to convolution. "Journal of Cognitive Neuroscience, 20", 762-778, 2008; Jacquemot, C., & Scott, S. K. What is the relationship between phonological short-term memory and speech processing? "Trends in Cognitive Sciences, 10", 480-486, 2006; Baddeley, A. D., & Hitch, G. Working memory. In G. H. Bower (Ed.), "The psychology of learning and motivation: Advances in research and theory" (Vol. 8, pp. 47-89). New York: Academic Press, 1974], we further assessed the effects of the two factors in a separate passive listening experiment (Experiment 2). In this experiment, the effect of the number of syllables was concentrated in posterior-medial regions of the supratemporal plane bilaterally, although there was no evidence of a significant response to added clusters. Taken together, the results identify the planum temporale as a key region in pWM; within this region, representations are likely to take the form of auditory or audiomotor "templates" or "chunks" at the level of the syllable [Papoutsi, M., de Zwart, J. A., Jansma, J. M., Pickering, M. J., Bednar, J. A., & Horwitz, B. From phonemes to articulatory codes: an fMRI study of the role of Broca's area in speech production. "Cerebral Cortex", 19, 2156-2165, 2009; Warren, J. E., Wise, R. J. S., & Warren, J. D. Sounds do-able: auditory-motor transformations and the posterior temporal plane. "Trends in Neurosciences, 28", 636-643, 2005; Griffiths, T. D., & Warren, J. D. The planum temporale as a computational hub. "Trends in Neurosciences, 25", 348-353, 2002], whereas more lateral structures on the STG may deal with phonetic analysis of the auditory input [Hickok, G. The functional neuroanatomy of language. "Physics of Life Reviews, 6", 121-143, 2009].
MIT Press. 55 Hayward Street, Cambridge, MA 02142. Tel: 617-253-2889; Fax: 617-253-1709; e-mail: journals-orders@mit.edu; Web site: http://www.mitpressjournals.org/loi/jocn
Publication Type: Journal Articles; Reports - Evaluative
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A