NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ768016
Record Type: Journal
Publication Date: 2006
Pages: 9
Abstractor: Author
ISBN: N/A
ISSN: ISSN-1072-0502
EISSN: N/A
Sound Sequence Discrimination Learning Motivated by Reward Requires Dopaminergic D2 Receptor Activation in the Rat Auditory Cortex
Kudoh, Masaharu; Shibuki, Katsuei
Learning & Memory, v13 n6 p690-698 Nov-Dec 2006
We have previously reported that sound sequence discrimination learning requires cholinergic inputs to the auditory cortex (AC) in rats. In that study, reward was used for motivating discrimination behavior in rats. Therefore, dopaminergic inputs mediating reward signals may have an important role in the learning. We tested the possibility in the present study. Rats were trained to discriminate sequences of two sound components, and licking behavior in response to one of the two sequences was rewarded with water. To identify the dopaminergic inputs responsible for the learning, dopaminergic afferents to the AC were lesioned with local injection of 6-hydroxydopamine (6-OHDA). The injection attenuated sound sequence discrimination learning, while it had no effect on discrimination between the sound components of the sequence stimuli. Local injection of 6-OHDA into the nucleus accumbens attenuated sound discrimination learning. However, not only discrimination learning of sound sequence but also that of the sound components were impaired. SCH23390 (0.2 mg/kg, i.p.), a D1 receptor antagonist, had no effect on sound sequence discrimination learning, while it attenuated the licking behavior to unfamiliar stimuli. Haloperidol (0.5 mg/kg, i.p.), a D2 family antagonist, attenuated sound sequence discrimination learning, while it had no clear suppressive effect on discrimination of two different sound components and licking. These results suggest that D2 family receptors activated by dopaminergic inputs to the AC are required for sound sequence discrimination learning.
Cold Spring Harbor Laboratory Press. 500 Sunnyside Boulevard, Woodbury, NY 11797-2924. Tel: 800-843-4388; 516-367-8800; Fax: 516-422-4097; e-mail: cshpres@cshl.edu; Web site: http://www.learnmem.org/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A