NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ913697
Record Type: Journal
Publication Date: 2011-Feb
Pages: 8
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1092-4388
EISSN: N/A
Automated Measurement of Vocal Fold Vibratory Asymmetry from High-Speed Videoendoscopy Recordings
Mehta, Daryush D.; Deliyski, Dimitar D.; Quatieri, Thomas F.; Hillman, Robert E.
Journal of Speech, Language, and Hearing Research, v54 n1 p47-54 Feb 2011
Purpose: In prior work, a manually derived measure of vocal fold vibratory phase asymmetry correlated to varying degrees with visual judgments made from laryngeal high-speed videoendoscopy (HSV) recordings. This investigation extended this work by establishing an automated HSV-based framework to quantify 3 categories of vocal fold vibratory asymmetry. Method: HSV-based analysis provided for cycle-to-cycle estimates of left-right phase asymmetry, left-right amplitude asymmetry, and axis shift during glottal closure for 52 speakers with no vocal pathology producing comfortable and pressed phonation. An initial cross-validation of the automated left-right phase asymmetry measure was performed by correlating the measure with other objective and subjective assessments of phase asymmetry. Results: Vocal fold vibratory asymmetry was exhibited to a similar extent in both comfortable and pressed phonations. The automated measure of left-right phase asymmetry strongly correlated with manually derived measures and moderately correlated with visual-perceptual ratings. Correlations with the visual-perceptual ratings remained relatively consistent as the automated measure was derived from kymograms taken at different glottal locations. Conclusions: An automated HSV-based framework for the quantification of vocal fold vibratory asymmetry was developed and initially validated. This framework serves as a platform for investigating relationships between vocal fold tissue motion and acoustic measures of voice function.
American Speech-Language-Hearing Association (ASHA). 10801 Rockville Pike, Rockville, MD 20852. Tel: 800-638-8255; Fax: 301-571-0457; e-mail: subscribe@asha.org; Web site: http://jslhr.asha.org
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A